Vector-5.svg
6 Minute Read

AWS vs GCP vs Azure: A Data Platform Comparison Guide

We explain how to choose the right cloud for your data platform and what to keep in mind when you get down to brass tacks.

The name data platform couldn’t be more mundane, but it would be a mistake to judge this technology by what it’s called. Ingesting, processing, analysing and presenting huge quantities of information—data platforms are turning around the fortunes of many organisations today and helping them thrive in some pretty tough markets.

In this blog, we’re going to get into which cloud is best for your data platform. We’re not going to debate whether cloud is your best option, because quite frankly we’re discounting an on-premises infrastructure from the start.

What we’re going to do is help you figure out which of the Big 3—Amazon Web Services (AWS), Google Cloud Platform (GCP) and Azure—is right for your data platform. And even give you an alternative to boot if none of the three cuts it.

Let’s get started.

 

What are the advantages and disadvantages of the Big 3 Clouds?

So what are the pros and cons of AWS, GCP and Azure? Before we answer that let’s make a couple of things clear. If you approach that question by going through the Big 3 service-by-service, you’re wasting your time.

It’s a mistake because by focusing on each cloud’s services capabilities, you’re missing the bigger picture and may end up having to back-track and rethink your original choice further down the line. You’ll see why later.

 

The Big 3 Defined

Amazon Web Services (AWS)

Part of Amazon, AWS has more than one million active users and offers more than 200 fully featured cloud services. It accounts for 41.5% of the cloud market and has 5x more cloud infrastructure deployed than its 14 leading competitors combined. In people’s minds, it stands out for AI and ML services. Azure might wonder where that idea comes from, but really there isn’t a cloud that does it in these areas better than AWS.

Google Cloud Platform (GCP)

GCP is the smallest of the Big 3 with 9% cloud marketshare. Despite being the smallest, it’s revenue growth is healthy, and has consistently been up to 45% per annum. In addition, it’s global network is one of the biggest. You get seamless integration with all Google products and it packs a fully-managed data warehouse, called BigQuery, which is highly rated and could be central part of your data platform.

Microsoft Azure

If we renamed Azure, the Microsoft Cloud, you’d get an instant feel for what we’re talking about here: It’s Microsoft’s own public cloud offering; and it’s growing fast. It’s crucially important to Microsoft, delivering revenue of $28.5 billion—up by 22%—in the company’s third quarter results, released in April 2023. It offers everything a data platform could need and is well-known for being simple to work with.

 

How do I distinguish between the Big 3?

Had we created this blog 8 years ago, you would have seen the word maturity dotted around in a number of places. Back then, people spoke about some of these clouds being more mature than others; and hence offering a broader range of services to meet a company’s specific needs.

Maturity is no longer relevant and if you try to separate the Big 3 on their service offerings—unless your business is very very niche—it’s not worth it.

When it comes to compute power, data storage options, networking, security and compliance, all of the Big 3 have what you want. They all offer tonnes of services—many of which you’ll probably never need.

Location, however, could be an issue. Depending on your industry, you’ll need to comply with a host of regulatory standards around cloud usage, one of which is where your data is situated.

That may sound odd because we’re talking about global cloud providers and thus your data will be everywhere, right? Correct, but while access is ubiquitous, your data will be stored on physical devices somewhere out there—and it’s where those devices sit that counts.

Hence, you need to check where the AWS, GCP or Azure data centre is located that will be storing your data and then you’ll know if that cloud is the one for you. The good news is that all the Big 3 are really up on the regulatory needs of multiple industries, including public sector, and they have teams that can provide you with all the information you need to know if you’ll be on the right side of your industry’s watchdogs.

 

The Big 3’s key points of difference

There is a way to think about AWS, GCP and Azure so you can start to draw lines between them. Sure, these are going to very broad statements but they are no less true for being light on detail:

  • AWS  the best place to build and run open-source software.
  • GCP – a great choice if you’re already using solutions within the Google Stack.
  • Azure – integrates seamlessly with your existing Microsoft technology.

Perhaps that’s all you really need to know. Maybe you can stop reading here. What’s certain is that these points are going to have a bearing when we get more into the details.

 

The Pros and Cons of AWS, GCP and Azure

With our broad brushstrokes in place, we now can start focusing the discussion a bit more on the advantages and disadvantages. We’ll show you how to properly evaluate each cloud, based on the premise that they all have the infrastructure, compute, storage and networking etc, you need.

  • Legacy Investment – this is such a crucial point—and so often overlooked—because if you’re heavily invested in Microsoft or Google, it makes no sense whatsoever not to leverage all that legacy.
  • Skillsets – this really builds on from the previous bullet, because if, for example, you have the Microsoft skills already in-house then adopting and working with a cloud like Azure is going to be much easier and less costly in terms of training. Of course, the same argument can apply to AWS and open-source. Therefore, you need to audit what skills you have internally, as part of the decision-making process.
  • Community – a reflection of their size, both AWS and Azure have much larger online communities than GCP. These communities provide advice and resources to resolve challenges and boost developers’ skillsets. The Azure Community, for example, has approximately 182,000 members, and Microsoft employees regularly participate in its online forums.
  • Politics – no we’re not joking; politics does play a role in any cloud decision. It doesn’t always happen, but we often see senior managers having an emotional connection with certain platforms, often Azure, since their experience of Microsoft goes back years. So which way does the wind blow in your company? AWS, GCP, Azure? What’s your sense?

 

Are AWS, GCP and Azure my only options?

We focused our blog on the Big 3 because they are the ones the vast majority of businesses choose from. Nevertheless, they aren’t your only options.

Ask your IT team about a Modern Data Stack as an alternative to the Big 3 and see what members say. A Modern Data Stack is an assembly of software tools and technologies running across different cloud platforms to collect, process, store, and analyse data.

To be honest, the idea has been around for more than a decade and it’s often used for niche cloud projects; however, modern data stack comes with a sense of freedom. What we mean by that is you’re getting the independence to run a particular workload on a particular cloud. Your IT team chooses whichever one is best suited to the job you want to do.

 

Parting thoughts

On balance, and based on our experience, we think you have to go a long way to beat Azure. It fits so well with legacy Microsoft infrastructures. There’s nothing that AWS and GCP pack that Azure doesn’t, unless it’s for something niche that probably wouldn’t be relevant to your business anyway.

Indeed, Azure carries Microsoft’s DNA, which makes it easy to learn and intuitive. There’s generally less coding required. What’s more, the whole community thing continues to grow so the support is out there if you need it, both in terms of gazillions of documents and online forums.

Boiled down to just three things, Azure is great on price, ease of use and ease of integration. Not bad really.

We hope this blog proves useful in helping you choose the right cloud for your platform. That said, our team of consultants at Ipsos Jarmany is available to continue the conversation and give you a deeper insight into the Big 3 and how to find the cloud that is best for your business.

Talk to us today and have an honest conversation about how to select the right cloud for your data platform.

Data-driven decision-making, made easy with Ipsos Jarmany

 

Read more blogs like this:

Everything you Need to Know about Forecasting

A forecast is a prediction based on past and present data. Sometimes, they go spectacularly wrong, like the expected sales of New Coke in the 1980s, which Coca-Cola quickly pulled, returning to the classic formula within 79 days of the launch. Another example is Kodak’s failure to identify the massive growth of digital camera technology.
Time icon
5 Minute Read

Data-Driven Transformation: Scaling Insights for Business Impact

Investment in data analytics and customer insights increased by 54% in 2024*. Three out of five organisations are using data analytics to drive business innovation**. The numbers are impressive. However, they fail to capture how many companies have yet to scale their data strategies across their operations.
Time icon
5 Minute Read

Boosting Customer Satisfaction: How Data And Analytics Drive Personalised Customer Experiences

In this blog, we’ll explain why personalising customer experiences can boost customer satisfaction, and why we believe leveraging data, and applying analytical techniques, is the mechanism for achieving this.
Time icon
6 Minute Read