Vector-5.svg
3 Minute Read

4 Ways You Can Use Data to Enhance Your ABM Strategy

Calling all marketeers. We recently attended the Global Account Based Marketing Conference in London, and it got us thinking about all the ways data can help to enhance your ABM strategy. Find out more below…

Account based marketing is a strategic approach to B2B marketing, whereby a business pools it’s resources to target a specific set of customers. Campaigns are then personalised to these target customers and designed to establish communication, build relationships and ultimately win new business. 

Whilst ABM has been used by companies in various forms for a couple of decades, many businesses are still missing out on a fundamental element which can help enhance their strategy and drive success… data. 

Did you know that: 

  • 1/3 of businesses aren’t using data for better decision-making 
  • 57% of businesses do not have a single view of data on their top clients across marketing, sales and customer success (I.e a consolidated view of account performance, activity and engagement stats)
  • 32% are not using data to better make decisions across marketing, sales and customer success. 

 

Here are 4 ways you can (and should) be using data to help bolster your ABM approach. 

Join forces with Ipsos Jarmany to turn your 2024 goals in to reality

#1 Connect your First-Party Data

Before you can launch your ABM strategy, you need to have a good understanding of your current customer base so you can establish important information such as: 

  • Who your contacts are in each account 
  • How they currently interact with you 
  • How often they interact with you 
  • The type of content they are interacting with 

To get a holistic view of your current customers you need to be consolidating your first party data from numerous data sets like CRM, website visits, social engagement, advertising impressions, product usage, emails and meetings. 

Not only will this help you to understand your current relationship with existing customers, but it will also help to unlock insights into the type of content they are engaging with, so you can also deliver relevant content. This is hugely important as consumers are 80% more likely to buy from a company that offers them a personalised experience. 

Whilst it sounds easy, it involves consolidating this data from numerous sources, cleaning it so it’s accurate, in-date and relevant, and then analysing and visualising this data so you can derive valuable insights.  

If you’re in the early stages of mapping out your ABM strategy, getting a true picture of your current customers will help you to map out characteristics of your ideal customer profile (ICP) so you can pinpoint target customers that match your current business model.

 

#2 Augment Intelligence with Third-Party Data

Once you’ve collated your first-party data, it’s then important to augment this intelligence with third-party data. This includes researching and collating information on: 

  • Industry size 
  • Job titles of influencers and key decision makers in that organisation/business sector  
  • Technographics 
  • Intent data
  • Industry news that may be impacting their business and creating pain points you can help to solve 

It’s important to deliver content that is relevant and personalised to customers their business and their industry. 76% expect more personalised digital experience from companies, so using third party data will provide you with the macro insights to help you achieve this. 

 

#3 Use AI to Derive Insights from your First and Third-Party Data

Once you’ve collated your first and third-party data, you can then make sense of this through AI. Data and analytics techniques, such as predictive analytics and propensity modelling, can help you derive information that will guide your ABM strategy. Specifically, these models can help you: 

  • Identify and score buying patterns 
  • Establish other customers that are showing similar patterns 
  • Predict pipelines 

This information will then help you to pinpoint opportunities within your existing accounts and new target accounts.

 

#4 Use Data Modelling to Understand the True Impact of your ABM Campaign

The previous points have focused on how data can help you with the planning stages of ABM, however it’s important to note that data can also derive useful insights post-ABM campaign too. 

Cross-channel activation is a big part of any ABM campaign, but how do you know which marketing tactics are having the most impact and delivering the best ROI?  

Data and analytics techniques, such as marketing mix modelling (MMM), can help with this. Not only will MMM tell you which elements of your campaign are working best, it will guide you towards the channels that are providing the best ROI vs the ones that aren’t, so you can better invest your marketing budget in the right channels. 

Account Based Marketing is all about delivering a personalised customer first experience to those key customers that you’re targeting – data can help you achieve this, and more. Speak to a member of the team today to find out how Ipsos Jarmany can support you on your ABM journey. 

data-driven decision-making, made easy with Ipsos Jarmany

Read more blogs like this:

Looking Back at 2024 and Predictions for 2025

It’s that moment again to look back over 2024 and make predictions for the coming 12 months.
Time icon
5 Minute Read

Mastering the Surge: Strategies for Data-Driven Success During Peak Seasons

It’s bonanza time for eCommerce. The third Thursday in November, aka Thanksgiving, marks the start of the peak season for online retailers. From Black Friday and Cyber Monday to Super Saturday, Boxing Day and into January, eCommerce checkouts worldwide will be buzzing.
Time icon
5 Minute Read

Everything you Need to Know about Forecasting

A forecast is a prediction based on past and present data. Sometimes, they go spectacularly wrong, like the expected sales of New Coke in the 1980s, which Coca-Cola quickly pulled, returning to the classic formula within 79 days of the launch. Another example is Kodak’s failure to identify the massive growth of digital camera technology.
Time icon
5 Minute Read